
-At77 16 MODELING AND CONTROL OF FLEXIBLE 
STRUCTURES(U) SYSTEMS 1/1

ENGINEERING INC GREENBELT NO W H BENNETT ET AL.
16 DEC 86 SEI-TR-86-i3 AFOSR-TR-87-88i3

UNCLASS IFIED F49628-84-C-8ii5 F/G 28/11 UL



1111*0
UZI111-

liii 1 8

1-5L

X111 -o



AFOSR-Th. 8 7 -0 0 1

1 0 Modeling and Control
of Flexible Structures

I Annual Report
October 1984 - October 1985 Approved f Or pub2

I ~~SEI-TR-86-13diti.

p
4

4

~C

ELECT

EB2

-- t

4F W'.

all'n

4tm boom-



O R-. 87-0018
Modeling and Control
of Flexible Structures

Annual Report
October 1984 - October 1985 APPPoved fOr PubI o

AP~dtsr~vforpu release;

SEI-TR-86-13

AFOSR Contract No. F49620-84-C-0115

AIR F Md' , C'-"F ~ r (ENF "T F' E M C (APqcj,rT.c'E OF ,' , STTTAL TO DTIC

Submitted to: This technical report
-'provcd to. Publ 0 re .e.3  IAW APR 190.12.D~strp.ution I. Unlimited.I

M4- TR 3. KE r

AFOSR/NA Chief, Technical ntorat1oUDjvjsl.
Bolling Air Force Base

Washington, DC 20332-6448
Attn: Dr. A. Amos

Submitted by:

SYSTEMS ENGINEERING, INC. E
Suite 308

7833 Walker Drive

aGreenbelt, MD 20770

Prepared by:

W.H. Bennett, G.L. Blankenship, H.G. Kwatny

S 7 2 0 A 7
,° 

,,



UNCLASSIFIED

SECURIT' CLASSIF ICAT ION OF THIS PAGE AD /7 o 4
REPORT DOCUMENTATION PAGE

is REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE ep rove 1., eba s l e.e

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

SEI-TR-86-13

6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAMnEOFIOR-IG OF]iAIZATMNv
(If applicable) Directorate of Aerospace Sciences

Systems Engineering, Inc. Air Force Office of Scientific Research/NA

6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

7833 Walker Drive, Suite 308 Building 410
Greenbelt, MD 20770 Bolling Air Force Base

Washington, D.C. 20332-6448
a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (if applicable)
same as 7a. Contract No. F49620-84-C-0115

Sc ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNITsame as 7b. ELEMENT NO. NO. NO. NO.

11. TITLE (Include Security Cla tication)// to

Modeling and Control of Flexible Structures (U ,_,
12. PERSONAL AUTHOR(S)

Drs. W. H. Bennett G. L. Blankenship, H. G. Kwatn,,
13& TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo.. Day 15. PAGE COUNT

Annual Reoort FROM --9/84 TO 10/85 86-12-16
1. SUPPLEMENTARY NOTATION

The views, opinions, and/or findings contained in this report are those of the authors
and should not be construed as an official AFOSR position, policy, or decision, unless so

17. COSATI CODES 18. SUBJECT TERMS (Continue on nruerse if neces-ary and identify by block number)

F ELD GROUP SUB. GR. designated by other documentation.

i9. A4TRACT (Continue on reverse if necessary and identify by block number)

In this report, we"focus, on the roles of models of flexible structures in the design and
evaluation of control laws for the damping of vibrational motions in those structures. In
the first section,.-we discusssa generic class of continuum models for flexible structures
describing the abstract mathematical formulation of the models as a framework for the design
of control laws. I the second section,-we0showihow direct frequency domain designs for
control laws may be achieved for this class of models based on a spectral factorization
procedure which replaces the usual computation of Riccati equations. Inf the third section,
we examine'the problem of deriving transfer function representations of the structural models
as required in the frequency domain design procedure. In section 4, we' describe an analy-
tical procedure for the derivation of continuum models for large scale structures with a
regular infrastructure.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED Q SAME AS RPT. 0 OTIC USERS 0 Unclassified

22s NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c. OFFICE SYMBOL
(include Area Code)

Dr. Anthony Amos (202) 767-4937 AFOSR/NA

DO FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE



Accession For

NTIS GFA&I
DTIC TA!

Ju_,t i L i

By-

-- • DI~'ri " tc:;

Avai J 1 C) coes

S ; , or

Executive Summary Dist t

In this report we focus on the roles of models of flexible structures in

the design and evaluation of control laws for the damping of vibrational
motions in those structures.

In the first section we discuss a generic class of continuum models for

flexible structures describing the abstract mathematical formulation of the
models as a framework for the design of control laws.

In the second section we show how direct frequency domain designs for

control lawvs may be achieved for this class of models based on a spectral

.: factorization procedure which replaces the usual computation of Riccati

equations. This procedure uses the infinite dimensional (continuum) model
of the structure, and it leads to distributed (or localized) controls which

impact the macroscopic behavior of the structure as a whole.

In the third section we examine the problem of deriving transfer function

representations of the structural models as required in the frequency domain

design procedure. We show that the analysis of certain types structures -
beams with one or more degrees of freedom - can be "automated" (though
this is far from trivial) using symbolic manipulation systems (SMP). Hy-

brid systems are also considered and models are developed based on the
*l interconnection of components and subsystems with a careful delineation

of the causal relationships among the components.

In section 4 we describe an analytical procedure for the derivation of
continuum models for large scale structures with a regular infrastructure.

* .4 We focus on the representation of dynamics of truss systems and the ther-

mal transport properties of lattice structures. Control problems for typical
systems of this type are also discussed.
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1 Introduction

It is now generally accepted that large, low mass density lattice structures
will be essential for several near term space applications. Moreover, it is
apparent that active control of structural vibrations will be necessary to
enhance their stiffness and damping properties. In this report we consider
the construction of effective mathematical models for elastic dynamics of
space structures with the objective of designing active control laws for these
systems.

The success of active control for such structures will hinge to some
extent on the ability of a control law to react to vibratory responses which
may be initially localized before they propagate throughout a structure.
This leads naturally to questions of how to implement active control so
as to distribute the control effort spatially as it is needed. We argue that
well known methods exist for the control of distributed parameter systems
and can be effectively applied if continuum models for the candidate space
structures can be computed. The nature of the required models is however
quite different from the more standard finite element models which are
popular for large structural analysis problems throughout the aerospace
industry.

We begin in this section with a review of continuum models for active
structural control. We highlight the nature of abstract state space models
for these systems. In this study we have employed one method for the
computation of a distributed control law for continuum dynamics based on
a numerical procedure for spectral factorization. This method requires the
computation of certain representation for an underlying state-space model
for the structure to be controlled. In a later section we discuss the theo-
retical basis for computing effective distributed parameter models for large
truss structures with regular lattice infastructure. The method which in-
volves "homogenization" (an asymptotic analysis of multiple scales) leads
to the well known Timeshenko model for beam dynamics. The analysis pro-
vides formulae for the effective beam parameters which are quite different
than have been suggested by other averaging schemes 120,21,22].

1



Comprehensive models of flexible spacecraft dynamics will involve sys-
tems with fairly complex interconnections of lumped and distributed sub-
systems, and therefore, we intend to construct the overall models by first
developing subsystem models and then combining them according to the
required interconnection rules. These interconnections lead to basic ques-
tions of causality and well-posedness of certain standard models for beams.
These questions are crucial to the computation of hybrid, state-space mod-
eling of an integrated space platform.

Throughout this effort we have focused on the potential for automatic
and computer-aided computation of the models by a combination of modern
computer algebra 1231 (symbolic manipulation) and numerical methods. In
our efforts we have used the program SMP 124,251. We will review the
progress in using SMP for the computation of irrational transfer function
models for hybrid problems in a later section.

1.1 Generic Models for Structural Dynamics

In this section, we discuss a generic model for elastic dynamics of structures
from the point of view of continuum modeling. We will summarize the con-
struction of a state space model and introduce a typical control problem
for vibration suppression. We highlight the modal approximations which
are popular for these problems and proceed to demonstrate an effective
alternate technique for model construction and control computation based
on the semi-group property [26] of a state space model. Effectively, mod-
eling and control law computation can proceed in the frequency domain,
based on transfer function methods, permitting the direct computation of
a resolvent operator. We focus on the class of structural contro I problems *'

for which the question of control of propagation of wave-like disturbances
is important. In this framework, we can present the semi-group theory by
concrete computations of practical interest to structural and control system
engineers.

The standard linear continuum model for a flexible structure [27] is

2
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given by a system of partial differential equations (PDE)

m(z)aw(zt,) + Do at + Aow(t, z) = F(t,z) (1)

where w(t, z) is an N-vector of displacements of a structure n with respect
to some equilibrium for n2 in a bounded, open set in RN. The (vector)
z E n)a coordinate in (2. We assume the boundary an is smooth. The mass
density m(z) is positive definite and bounded on an. The damping term
Doaw/at contains both (asymmetric) gyroscopic and (symmetric) struc-
tural damping effects. The internal restoring force A0w is generated by a
time-invariant, differential operator A0 for the structure. For most common
structural models, A0 is an unbounded differential operator with domain
D(Ao) consisting of certain smooth functions satisfying appropriate bound-
ary conditions on an. Thus, for these problems, D(Ao) is typically dense
in the Hilbert space N0 = L2 (fn). Often (but not always), the spectrum of
A 0, a(Ao), consists of discrete eigenvalues with associated eigenfunctions
which constitute a basis for L2 (n).

The applied force distribution F(t, z) can be thought of as consisting of
three components

F(t, z) = Fd(t,z) + F,(t,z) + F.(t,z) (2)

where Fd is N-vector of exogenous disturbances (possibly forces and torques),
F, is a continuous, distributed controlled force field (an available option in
only some special applications), and F. represents controlled forces due to
localized actuation;

F. (t,z) = Cjbj(z)uj(t) = Bou(t). (3)
j=1

The actuator influence functions bj(z) are highly localized in (2 and can be
approximated by delta functions. Measurements are available from a finite
number p of sensors

aw
Y(t) = Cow + Cot (4)

where y1 (t) is a p-vector. The operators B0 : R" -- NO, Co N0 -- RP , and
Co : N0 -- RP are bounded.

3-4



The standard optimal regulator control problem for this model is to find

the controls u,(t), j = 1,..., k (we ignore the possibility of F,) given the
observations y(t) to maintain the system state, e.g.,

((
X~t'Z) Guat z) JI(5

such that the performance index

J (U) f L0 (11 X 11o + EUTt) dt (6)

is minimized where lIxIINO = (x, Q)N defined in an appropriate Hilbert
space for the state z. This is the generic control problem surveyed in
Balas [28]. In this report, we will concentrate on the construction of state
space models and computational aspects of equations of the form (1) and
of optimal (discrete) controls u,(t) appearing in (3).

1.2 State Space Models

N. The choice of state space given by (5) is often attractive for models i n
the generic form (1). (We will discuss later that attractive alternate state
space models can arise in hybrid constructions.) A natural assumption for
structural problems [27] is that A0 is symmetric with compact resolvent
and discrete (real) spectrum which is bounded from below. The state (5)
can be considered as an element of a Hilbert space X = D(Ao) 1/2 x No with

the energy norm
EzIIg = (x1, Aozl)o + (mz 2, zX2 )o (7)

where the first term represents potential energy and the second term is
* ikinetic energy. Thus the (abstract) state space model can be written

',"': " a (t, z)
8zt.")- Az(t,z) + Bu(t) (8)

at
where y(t) = Cz(t,z)

A 0 B = 0 ,C= [Co, CO].()
A=-A0 -Do Bo

4
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For the elastic dynamics of space structures, there is always some (possibly
small) damping Do appearing in (1) which causes A to b e dissipative. Thus
the criteria of the Hille-Yoshida-Phillips theorem [26] are satisfied and A
generates a Co-semigroup with an operator which we write suggestively as

A t  Moreover, such models are "hyperbolic" [27] in the sense that the
semigroup is a contraction, i.e., IjeAtjJ < 1 and all but the zero frequency
poles are only slightly damped; heAt < e -6 ' for some small 6 > 0. As
we shall discuss in section 3, some popular models for structural elements
such as beams do not fit in this framework. However, this framework
includes models appropriate for considerations of wave-like dynamics which
propagate causally in the spatial domain. For such models, the question
of how to compute controls u(t) and system response z(t) focuses on the
so-called mild solution of (8);

1I

z( t,z) = eA X(O,z) + eAt - )Bu(o)da. (10)

* Various methods are available for approximation of the system (8) Burns
and Cliff 129]. One popular method is based on a modal (eigen-) expansion
of A which generates a sequence of finite dimensional subspaces Yk C N(, k
1,2,..., where Nk = span{Oj, j = 1,..., k} and the O,(z) are eigenfunctions
(or mode shapes) for A. Based on this approximation, a sequence of finite
dimensional models for (5) can be generated;

(k)(t) ---- A(k)z(k)(t) + B(h)u(t;. (11)

Using a truncated model (11) with k finite and the performance index
J(u) (6) projected onto the space Nk, one can solve the associated optimal

* control problem for the first k modes of A. However, as noted in Balas
[28] in all but a few special cases, the control law when applied to the

"4 system (5) will excite higher order modes. The inherent robustness and K
-- stability properties as well as the degree of suboptimality of control laws

based on such truncated modal approximations has received a great deal
of attention in both the engineering and mathematics literature [27,28].
Various alternate approaches are available which deal directly with infinite
dimensional control problem given by (6) and (10) - at least abstractly

, j6

.. .



I

Z: Russell [30]. One method suggested by Davis [31,321 offers the advantage
of a computational procedure for approximating the true optimal control
in terms of the required control bandwidth. The method is based on an
extension of a Wiener-Hopf solution [32] for the abstract control problem.

.X
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2 Wiener-Hopf Methods for Computation of
Optimal, State-Feedback Control: The Davis-
Stenger Algorithm

The connections between least squares optimization, spectral factorization,
and algebraic Riccati equations have been considered important in control
theory for many years. (See e.g., Anderson [66], Brockett [33], Willems [69],
Helton [68], and the references therein). To see how the connection arises,
consider the standard, finite-dimensiona!, infinite time regulator problem:

Smin n JIu(t)I12 + Ily(t)I 2ldt (1)UEU6d

subject to the linear, time-invariant system model

(t)= Ax(t) + Bu(t), x(0) = xo (2)

and controlled output
. y(t) = CX(t), t > 0. (3)

The transfer function relating the Laplace transform of the input vector
fi(s) to the output vector D(s) is

(s) = ()(),
S..~ G(s) = C[sI - A]-1 B. (4)

The optimal control is known to be a linear state feedback

u(t) = -Koptx(t) = -BTPz(t) (5)

S.where P is the unique, positive definite symmetric solution to algebraic

- (matrix) Riccati equation,

StndrdPA + ATp - PB TBP + CTC = 0. (6)

Standard algebraic manipulations based on (1)-(6) provide the spectral
factorization relation

[I + Kpt(-sI - A)-B]T[I + K.,(.I - A)-B]

-= + BT(_8 - AT)-cTc(aI- A)-'B. (7)

7



[57, pp. 68]. Clearly (7) can be rewritten

H(s) = I + GT(-s)G(s) Fr(-s)F(s) (8)

*where F(s) = I + K 0 pt[sI - A]-'B is the causal spectral factor of H(s).
In fact many desirable properties of linear quadratic regulator design (e.g.
inherent robustness properties) follow from (8) and the interpretation of
F(s) as the optimal return-difference operator for the problem (1)-(3).

Recall that for a closed loop control given by the transfer function re-
lations

D (S) Q Q(S)i(S)
= ~ - (9)

that the return-difference with respect to the returned signal D(s) = i(s)
is computed as the difference between 9s(s) and fi(s) if the loop is broken
there. Thus, (s) - i(s) = [1 + Q(s)] f(s).

. ,, In (8) F(s) is the optimal return-difference for loop breaking at the
control with state feedback. We remark that for continuum models for

pi flexible structures that the underlying state space models are infinite dimen-
sional and F(s) represents an ideal limit on achievable control performance

with state feedback.

" >In Nyquist stability theory the complex contour 1 + H(jw) for w E R
is called the Nyquist contour. Practical aspects of Nyquist stability tests
have been the cornerstone of control system design for at least 50 years.
These stability tests have been extended to include an important class of
distributed parameter systems where the resulting return difference is an
irrational transfer function [58]. For our purposes in this study the Nyquist
test will prove central and we will focus on the class of irrational transfer
functions for which: (1) spectral factorization can be effectively computed
at a finite number of samples and (2) the Nyquist theory of stability is well

defined.

8



In addition to (7) a useful integral equation can be derived for the
optimal state feedback under the additional assumption that the spectrum

of the operator A in (2) is contained the open left half plane (C.). We will
state the result as a theorem and outline a proof for the finite dimensional
case. Next we consider the additional assumptions necessary for the result
to hold for control of a distributed parameter problem in the form of (1)-
(3).

Theorem 1 (Davis) With the optimal linear regulator problem as defined
in (1)-(3) the optimal feedback control (if it exists) u(t) = K0 ,,x(t), can be~computed as

Komute as J [F*(iw)] 1 G*(iw)CR(iw,A)dw. 
(10)

under the assumption that A is a atable (matrix) operator.

In (10) we use the notation G(s) as defined in (4), F*(iw) = FT( iw) with
F(s) the causal spectral factor given by (8) and R(iw; A) = [iwl- A] - the
(matrix) resolvent for A.

Proof: From standard results [33] the optimal control (if it exists) will
stabilize the closed loop system so that o(A - BKpt) C C_ where C_
is the open left half of the complex plane. Construct a closed rectifiable
contour r in the complex plane consisting of a relatively large portion of
the iw-axis and a semicircular portion in the left half plane such that r
encircles o(A - BK0p,) in the positive sense. Let A, - A - BKp,. Then

1 [sI - AC]- d s = I. (11)
27ri

By assumption o(-AT) is contained in C+ and

f[sI +AT'ds=. (12)

From (6) we write
ATp + PA, = CTC. (13)

I 
w
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This leads to the relation

P(sI - A,)-' + (-sI - AT)- 1 P = (-sI - AT)-ICTC (sI - A,)-'. (14)

Now integrate (14) on r and use (11) and (12) to get

P = -- f (-l/- AT)-ICTC(SI - :) 1ds. (15)

Since the optimal gain is K0 ,, = BTP - [PB]T we get

K0,, t 1 BT(sI - A,)C-ITC(-.I - AT) -lda.
K7ri (16)

Now from (7) and (8) we get that

C(sI - A)-'B C(.sI - A)-'B [I + Ko,,(sI - A)-'B] (17)

. and therefore
C(I - A)-'B = G(s)F-'(s).

Thus we can write

K 1, = F-T(8)GT(,)C(-I - A)-ds. (18)

Finally (10) is determined by substitutings = iw under the observation
that G(i) --+ 0 as w -4 oo.

For (10) to hold when G(s) is irrational we must impose some constraints
on the spectral properties of the associated infinite-dimensional operator A.
Consideration for the computation of the Riccati operator P by the integral
formula (15) suggests that the spectrum of A must consist of a countably
infinite set of eigenvalues so that the path integrals can be computed as

=" in (11) and (12). In addition, the spectral sets o(A,) and o(A) must be
separated by the imaginary axis (including the point at infinity). Also,

-' the observation that G(iw) -- 0 as w -- oo for rational functions must be
replaced by an equivalent assumption which further restricts the class of
irrational transfer functions.

I0
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Effectively these additional assumptions will be guaranteed by the class
of transfer functions for which spectral factorization can be performed.

We will consider spectral factorization for distributed systems next. More
importantly with the usual assumptions used in constructing continuum
models for mechanical structures it appears that the resulting transfer func-
tions will have the appropriate properties. However, in this study we have
encountered much confusion in the literature. As discussed in the intro-
duction a major goal of this study was to provide a consistent method for
model construction leading to an appropriate class of transfer functions for
models which are both well-posed and have appropriate spectral proper-
ties. In the next section we delineate the specific class of transfer functions
for which spectral factorization can be computed efficiently by a numerical
algorithm. We indicate the basis for the algorithm and discuss the im-
plications of sampling and interpolation of the spectral factor. Finally we
discuss the relationship between rational approximation and modal control.

2.1 Spectral Factorization

In this section we review the basis for an interactive algorithm for compu-
tation of a frequency sampled spectral factor. The algorithm (due to Davis
and Dickinson [32]) provides an effective computational tool for obtaining
the optimal gain K.t via (10) without regard to computational difficulties
associated with large dimensional Riccati equations. Convergence of the
algorithm depends on certain technical assumptions which delineate the
class of transfer functions. In the finite dimensional setting, a recursive
algorithm for computation of the causal spectral factor F(s) follows from
a Newton-Raphson iteration for the matrix Riccati equation (6) given an
initial stabilizing feedback Ko = B*Po;

P.+ 1 (A - BB*P.) + (A - BB*P,)*P,,+, = -C*C - P.BB*PI.

At the nth iteration one can take an approximation to the causal spectral
factor as

F.(a) I + B*P(,,- A)-'B.

"16
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Then following Davis and Dickinson 1321 this leads to the form of the alga-

rithm
F,.+I(iw) = P+i {IF.*(iw)11'H(iw)[Fn(iWj)Jf1 F.(iw), (19)

where P+ is the causal projection operator defined on the convolution alge-
bra I EDL, or I EDL 2 by

P+ {I + i-: f (t)cwitdt} I + f f(t)e-'wldt.

Computation of causal projection of a signal is a standard problem in
signal processing which can be effectively solved through the use of a Hilbert
transform [591, [60].

Definition .1 The Hilbert transform of a signal f (t) i8 given a8

0() 1-j tdr = f (t) * .(20)

The basic utility of the Hilbert transform is evident by examination of its
Fourier transform.

Fact 2 Let P(w) be the Fourier transform of J(t) and F(w) be the Fourier
transform of f (t).

fP0w) 0= ff LP d e'wtdt. ( 1

Since for H(w) =f. f -eiwldt, we see that H(w) is a complex function with
the properties

IH(w)I = 1 -7/

ar ()= I7r/2 w <0 (22)I

- 4, V>Zh~SX~ 4 .V~*~. *'~r~* 12
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Therefore from (21) and (22) we get that

iFw) w>0 (23)l () = iF(w) w < 0

Now to compute the causal projection of f(t) (as in (19)) given frequency
domain data F(w) we first compute the Hilbert transform

P(w) = F(w) * 1
7rW

By duality of the Fourier transform pair the property (23) holds in th e
domain t;

7-1 {P(w)} = -isgn(t)f(t).

Finally causal projection can be computed as

P+ (F(w)}=) [F(w) + (w)] .(24)

{[]

Before we consider computational issues further we review the extension of
this algorithm to irrational transfer functions. The questions of existence

r; and uniqueness of the spectral factorization of the transform H(s) = I +
GT(s)G(s) naturally lead to conditions for which S(w) = GT(-iw)G(iw) is
positive semidefinite for w real. In the convergence proof of the iteration
(19) Davis assumes that G(s) is the transform of a rea 1, vector-valued
function which is both integrable and square integrable; i.e., G(iw) E F(L, n
L 2).

With these assumptions it is clear from the classical theory of Gohberg
and Krein [54] that H(s) has a unique spectral factorization as given in (8)
with

F±(iw) - I E 7r(L+)

where 7(L + ) is the class of Fourier transforms of functions in L, with
positive support. As noted in [32], the assumptions on G(s) in fact imply
that"': F'(iw) I 3 (L+ n L+)

and F(iw) = F(-iw).

13
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Using this assumption Davis is able to show that the recursion (19)
starting from an initial Fo(iw) E 7(L~flL 2) has all iterates F.(iw) E 7(Linf
L2) and that:

lim. 0. F.*(w)F.(w) = H(w) almost everywhere (25)

lim. F,,(s) = F(s) for all Is with WRe a > 0. (26)

These results should not be surprising for the class of transfer functions
considered. The following theorems sumnmarize well known properties of
L, and L2 functions.

j TheoremS3 (158]) If f E L, then

1. W " 1(w) is uniformly continuous for W E R

4. f (t) = f. j(iw)eiwtdw almost everyw'here in R.

Theorem 4 ((Parseval's theorem) [58]) If f E L2 then

fl'fdt= -f J f(w)Idw;

S. as N -oo +

1 (+N )(iW)ewtdW '~ft

14



So we see that f E L, means that f(iw) is bounded on w and therefore the
Fourier transform is well defined while f E L2 provides consistent approxi-
mation theory for band limited signals. We note that the third L, property
means that such transfer functions are effectively band limited and strictly
proper.

Application of spectral factor to the integral formula (10) will further
restrict consideration to G(s) both causal and stable so that G(8) is analytic
for Res > 0. Thus the transfer functions we are considering belong to the
Hardy space G(s) E H2 n HO. Recall that by definition f E H2 iff is
complex valued and analytic in C+ (the open right half of the complex
plane) and

o7>0-

while f E H00 if f is complex valued and analytic in C+ and

sup I .) < 00.
SEC+

The first property is inherited from f E L2 while the second comes from
% -" " f E L i .

Finally, we remark that for certain mechanical structures that the trans-
fer function models can be factorized in a "product expansion" [71]

1 8 / (,/,k (27)
1+ (82/zW2))'(s) = .I1 + (,2/,4(7

Thus we conclude these remarks by indicating that the class of transfer
function models for which spectral factorization can be computed by the
present method are meromorphic and have representations as (27).

2.1.1 Remarks on Algorithm Construction

With regard to the integral formula for the optimal state feedback gain it
is clear that we need [F(iw)]-1. Thus as suggested by Davis it is convenient
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to implement the iteration in the form

IF.+,]-' = [F.]- (I + P+ {[F] - H [F] -1 - I}-. (28)

Furthermore by initializing with F0 a diagonal matrix with diagonal ele-
ments equal to the spectral factors of the diagonal elements of H the second
term of (28) remains a perturbation of the identity (since [F,*]-IH[Fn[- -

I --. 0) which regularizes the computations. The diagonal initialization
guarantees that the first residual [Fo]-IH[Fo]-1 has ones on the diagonal
and all off diagonal elements less than one in magnitude. Using the proper-
ties of the Hilbert transform and the formula (24) one can readily compute
the causal spectral factor for the individual scaler transfer functions di-
rectly (i.e. without iteration). In particular, the kil diagonal element of
H(w),hk(w) is a real valued function with hk(w) > 0. Let hk(w) be the
Hilbert transform of hk(w); viz.,

_k(W) h (or) da (29)

then the causal spectral factor hk(iw) fk(-iw)fk(iw) is given by

f&(W) = /Reh(w) e (30)

Finally, we remark that numerical computation of the Hilbert trans-
form can be achieved in several ways. Direct numerical integration of (29)
is complicated by the fact that the integral is convergent in the Cauchy
principal value sense. Effective quadrature algorithms for such problems
have been coded and tested. A public domain version utilizing an adap-
tive quadrature procedure is available in the routine QAWC contained in
a software package called QUADPACK [61].

Another approach is taken by Davis [32] based on an algorithm of
Stenger [62]. This procedure essentially implements a discrete (sampled)
version of the required computation using a digital Hilbert transform. For

a finite number of sample points the Hilbert transform computation can
be implemented by taking a discrete "fast fourier transform" (FFT) of
the sampled data and shifting the imaginary part of the transformed data



according to (21). It is well known that control of error induced by the
sampling process (Gibbs phenomenon) requires the careful choice of "data
windows" or weighting functions for the computation. Although these con-
siderations are well described in the literature on digital signal processing
[60], [64], [631 it is not apparent that these considerations were contained
in the work of Stenger.

In our experience, direct implementation of the algorithm described in
Davis and Dickinson, based on the causal projection of F. Stenger [62] tends
to be unreliable. Since detailed design of window functions for discrete
Hilbert transforms was considered outside the scope of the present study
we have found it expedient to use the adaptive quadrature software from
QUADPACK [61].

V

2.1.2 Relationship to Modal Methods

In applications one typically sees the use of modal methods in the modeling

and control of continuum models for structures with a procedure as follows
1281,1721:

1. Determine a finite-dimensional, modal (or finite element) approxima-
tion to the distributed parameter problem yielding

, r(t) = Ax(t) + Bu(t)

with z(t) a finite-dimensional, state vector representing displacements
and velocities for a finite number of structural modes.

2. The finite-dimensional model may be further truncated to achieve a
"reduced-order" approximation which will be used for control synthe-
Bi8.

3. Standard linear quadratic regulation theory is applied to the reduced-
order model. The resulting matrix Riccati equation can be solved
(in principal) although at some significant computational cost for an
arbitrary (large) number of modes.
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4. Implementation of the active control law requires on-line estimation of

the particular plant modes included for control design A subsequent
analysis of the effect of control action on the residual (truncated)

6model may force a rather drastic reduction in the effective loop gain
to avoid a potentially destabilizing phenomenon known as "spillover".

We remark that control laws of this type involve state feedback for
a truncated model and therefore require real-time measurement (or esti-
mation) of certain individual modes. Since both mode shapes and modal
frequencies can change under the influence of feedback control such feed-
back can be difficult to realize. This is further complicated by the fact that
typically, exact modal data is not available in the construction of step 1
using finite element procedures. The Wiener-Hopf methods we are inves-

..* . tigating here are based on quite different modeling schemes and we will
discuss modeling in more detail in later sections. However, since it is often

* . desired to control "certain troublesome modes" in engineering design it is
useful to consider the relationship of these methods with the objective of
modal control.

_ 'Consider the state space continuum model for a structure considered in
section 1. sx(t,z) = Ax(t, z) + Bu(t) (31)

at
where x(t,z) E )(fl), a real Hilbert space satisfying boundary conditions
for z E f) is finite-dimensional control, A, B are operators on X (fl) and we
assume that for structures A is densely defined on M and maximally dissi-
pative with a discrete spectrum consisting of its eigenvalues. The solution
to (31) can therefore be given as

z(tz) = eAtX(O, z) + j eA(t-)Bu(s)ds (32)

*" where eAt is the semigroup operator. Roughly, since A is assumed to have
*, . discrete spectrum a modal analysis can be based on an cigen expansion of

A in terms of eigenvalues Ak and eigenfunctions ,ok(Z)

Apt(z) = p(z).
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Considering the Laplace transform of (32)

=(sz) R(s;A)x(Oz)+HBc(sz)i(s) (33)

r = G(s,z,w)x(0,w)dw + HBc(s, z)fi(s), (34)

where R(s;A) is the resolvent for A which can be given by the integral
operator (as shown) with kernel called the Green's function.

In the framr-vork of the distributed parameter (DP) control problem
"modal control" as an objective means that we choose the output for control
(2) by defining the projection 7rN M - )N C M where M N is a finite

kdimensional "modal" subspace of H. Then taking

y(t) = CirNX(t,z)

leads to

|(S, Z) = j rNGT(S, z, w)z(O, w)dw + rNHBc(a, z)i (a),

where the elements of the matrix Green's function can be given in terms of
a corresponding modal expansion;

CG, (. Z, W) Pk~ (Z) Pk (W)

,- with p&(s) = sl + 2 Awts + w2. Here Wk, are the frequency and damping
of the eigenmodes and Pk(z) are the eigenfunctions (modeshapes).

. To compute the optimal control by Wiener-Hopf methods we must per-
form spectral factorization on

% , H(s) = I + GT(-8)G(8)

-where G(s) = CHBc(S,z) so that G(s) is a rational transfer function.

.': - Computation of the optimal state feedback via (10 requires the resolvent

CR(iw,A) x(Ow) = J rNG(8,z ,w)x(O, w)dw
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which is also rational in the Laplace variable a. Under the assumption that
all truncated modes are stable then the resulting control will stabilize the
system. In this case the Davis method produces an effective distributed
feedback control

u (t) = =/o (,z ()x(t )d

for the truncated modal subspace which is effectively the same control one
would get by the procedure described earlier assuming that exact modal
data is available. However notice that the control is a full (distributed) state
feedback so that (in principle) modal measurements are not required. Fur-
thermore, computation of large dimensional Riccati equations is replaced
by the procedure for spectral factorization. We remark that a variety of
algorithms exist for spectral factorization of rational functions [70], [73].

The point to focus on is that the method of Davis completely separates
the question of rational approximation (which may be based on modal
expansion) of the model from the computational issues associated with
determining the control. Instead, approximation is based on sampling and
interpolation of the transfer functions is involved.

2.2 Importance of Damping in Models for Distributed
Control

For the present study we have attempted to compute distributed controls
for several examples. Several negative results lead us to reevaluate the
theoretical basis for control and modeling problem. Our difficulties stem
from precise computation of the irrational transfer functions for several
distributed models which will be discussed later. Thus our control laws are
computed and tested on bona fide distributed parameter models and not on
finite dimensional approximations; therefore the idiosyncracies of various
(academic) examples will lead to obvious difficulties. In this section we
review our most recent conclusions about the assumptions in modeling for
mechanical structures and resulting computation of optimal control laws.
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The most pertinent comments in the literature appear to be summa-
rized in the work of Gibson [65]. In particular, the importance of damping
and the ability to compute distributed control laws for infinite dimensional
models for mechanical structures. It is true that computation of control
laws for such problems will always involve approximation in modeling, con-
trol problem formulation, and numerical computation. Gibson focuses on
this question of approximation in modeling and control for distributed pa-
rameter problems via the use of finite dimensional models and control com-
putation based on these models. Although on the surface the Davis method
(based on spectral factorization of irrational transfer functions) is not sub-
ject to finite dimensional approximation (at least in the sense of modal
expansions) it is clear that approximation via sampling and interpolation
of the transfer functions involved is required.

Let us consider some observations of Gibson [65]. First, Consider the

class of elastic mechanical structures modeled,

, i(t, z) + Coi(t, z) + Aox(t, z) = Bu(t) (35)

where x E N(fl) appropriately chosen to match required boundary condi-
tions, u(t) is a finite dimensional vector of controls, A0 is a self adjoint
operator A0 : D(Ao) - N densely defined on X1. Gibson further assumes
that A0 is coercive; i.e.

9(Aox,zx)m p'jIxzII, x E D(Ao)

and A l is compact. Co is nonnegative, symmetric linear operator and
* there exists -y > 0 such that

ICozIl !_ -y2IAoxIIN, x E D(Ao). (36)

Finally, BO is taken to be a bounded operator. Gibson shows that (36) is a
*necessary condition for the -esulting semigroup operator for

F0  1i
"L[ J

on N1 x R to be uniformli ezponentially atable; i.e., there exists M > 0, ca > 0
such that HeAthl <_ Me- "' for t > 0. Such behavior corresponds to the case
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when damping provides a uniform decay rate. Gibson addresses the ques-
tion of convergence and stability of a sequence of finite dimensional (pos-
sibly modal) approximate control problems to the unique optimal control
for the distributed model. His results indicate [65, thm 4.1] that for the
quadratic linear regulator problem for the distributed model above (35) that
if a solution exists the exact optimal feedback control provides a closed loop
system whose infinitesimal generator A,, = A + BKpt generates a strongly
continuous semigroup which is uniformly exponentially stable.

For systems without damping; i.e. C0 - 0 in (35), Gibson shows that
there can be iio nonnegative, selfadjoint solution for the algebraic Riccati

I0-.' equation for the distributed model. This follows from the observation [65,
theorem 5.13] that for Co -- 0, the semigroup generated by A + 6 for any
- a compact linear operator, cannot be uniformly exponentially stable.

For systems with damping Gibson shows that the damping must be
such that A (the generator for the open loop system) is uniformly exponen-
tially stable in order that uniform exponential stability of the closed-loop

. system can be obtained by compact linear feedback. The significance of
this fact is that the physical nature of damping must be considered in the
computation of distributed parameter control and for problems where the
available control affectors provide 'localized' (in the spatial domain) forces

9 (or torques). Damping with a uniform decay rate (for essentially all modes)
" is required for such systems to be controlled with uniform exponential sta-

bility. Although it is generally agreed that physical structures will have
-'. *. ~ this property is somewhat disconcerting that many standard models for

simple structural elements like beams with internal damping do not have
* . these properties. In fact with the exception of viscous damping there does

not appear to be a single, universally excepted, well-defined mathematical
model for beam dynamics which is obviously appropriate for the study of

* . distributed parameter control of structures.

In a later section we will discuss damping models for structural elements
- :in detail. At this point we remark that in this study it became apparent

that the performance of active control of elastic structures was seen to be
heavily dependent on the type of damping models used. If one is willing to
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assume a sufficient amount of viscous damping then stabilizing control can
be computed. Since viscous effects will not be present in space applications
one is faced with a choice of several models for internal damping. Many
of these models lead to problems for which either a uniform decay rate is
not available or for which the spectrum of the operator contains more than
mere eigenvalues. These models cannot be stabilized by compact linear
feedback whether it is computed by Weiner-Hopf methods or by modal
approximation and solution of a finite-dimensional quadratic regulator for

• " the reduced model. However if one takes the second path the relevant
stability questions are completely lost in the model reduction.

What is an appropriate choice for internal damping in space structures
is definitely an open question. This issue has apparently not received a
great deal of attention in the aerospace industry especially in that portion
of the community involved in control of large flexible structures. These
standard procedure here (as evidenced in for instance the ACOSS program)
is to assume "low" modal damping can be added to the reduced-order
model prior to control system design. In the present frequency domain
computations one is forced to resolve these issues before proceeding with

control computation.

S-.
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3 State Space Models for Distributed Structural
Elements

3.1 Standard Forms for Linear PDEs

In this section, we will consider the problem of deriving the transfer matrix
..4 description for typical distributed elements. It is our contention that the

systems of interest to us-specifically beams with one space variable and
perhaps several degrees of freedom-can be represented by one of two stan-
dard forms. Once identifying the structure of these standard models, it is
straightforward, although far from trivial, to mechanize the construction
of the required transfer matrices using symbolic computation. Moreover,
in order to assemble hybrid system models by the interconnection of com-

-" ponents or subsystems, it is essential to have a clear understanding of the
causal requirements of the component mathematical models. The follow-
ing paragraphs develop the required concepts in terms of commonly used
structural elements. Since typical elements interact at physical boundaries,
our foremost concern is with the formulation of appropriate boundary con-
ditions for well-posed, initial-boundary value problems.

Before proceeding, we establish some basic terminology associated with
systems of partial differential equations. Consider the system of first order
partial differential equations defined for t > 0 and 0 < x < L

Etw = A - +  w ". (1)

If E is nonsingular, then (1) can be written

=a =A + (2)

where A = E-A ", B = E-B*. If A has only real eigenvalues and a
complete set of eigenvectors, then the system is said to be hyperbolic (see,
for example, Zauderer [40]). If there are multiple real eigenvalues and less
than a complete set of eigenvectors, then the system is of (partial) parabolic
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type. If all of the eigenvalues are complex, the system is of elliptic type.
Systems with complex eigenvalues are not causal. Lyczkowski, et al. [411,
and Sursock [421 provide an interesting discussion of this point in connection
with a fluid flow problem. The underlying problem is that systems with
complex eigenvalues are not well-posed as initial value problems, John [431,

N. Lax [44]. We will not consider such problems any further.

If E is singular, (1) can give rise to mixed systems of all types. Some
-. ' examples can be found in Firedly [45] and Lapidus and Pinder 1461. Our

interest in this case will be limited to purely parabolic systems of the type

8w 802w 8w- =D _ + A + Bw (3)

which commonly arise in engineering problems.

When the equations of motion for structural elements are derived from
conservation laws-in particular, from variational principles-the resulting

P equations are typically of hyperbolic type (see, for example, Crandall, et al.
[38]). However, further standard assumptions and approximations reduce

. the equations to parabolic systems in the form of (3). In the following
paragraphs, several examples will be given. In summary, we are primarily
interested in hyperbolic systems (1) and parabolic systems (3). In addition

to equations (1) or (3), there are associated initial and boundary conditions.
For equation (1), these conditions take the general form

" initial conditions w(z,0) = 1(X)
~(4)

boundary conditions Ew(O,t) + rw(L,t) = g(t) (4

where dim(g)=dim(w). For equation (3), they take the general form

*i " initial conditions w(z,O) = f(z) + ,L
boundary conditions EIw(O,t) + E--(O,t) + riw(L,t) + VL(L,t) = g(t)(5) [

S. ,where dim(g)=2dim(w).

It is well known that the coefficient matrices in (4), (5) must satisfy
certain constraints if the problem formulation is to be well-posed. In the
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hyperbolic case (equations (1) and (4)), these constraints essentially require
that the boundary conditions be compatible with the wave directions. Fur-
ther discussion can be found in Russell [30] and Agarwala [47.

3.2 The Timoshenko Beam Model

We will show how some conventional beam models can be reduced to the
' standard forms described in the preceding paragraphs. In particular, we

will begin with the Timoshenko model and then consider two commonly
used approximations which can be derived from it, the Euler-Bernoulli
model and the "string" model.

Consider the beam illustrated in Figure 1. The equations of motion can
be derived using Lagrange's equations and in the absence of dissipation
take the form

~along with the natural boundary conditions for a = 0, L

:: displacement or shear force
17( r/a, t) = 17a~t) ,'GA ,- 4(t, t)) = f,.(t)(7

Sand
rotation or moment

4,.. (a,t) = ,,(t) EI (=t) ,-,(t). (8)

--.'. .-. The two equations (6) can be replaced by four first-order equations by
• _-introducing two new variables, zi(x,t) and 'y(x,t):

at ax

. 22a
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a a-1  A

a-Y _ E a
at P atpx

These equations clearly represent a hyperbolic system and the natural
boundary c onditions become for a = 0, L

displacement or shear force
, (a,t) = t).(t) V (a,t) = Vi,(t), a(t) = L- (10)

and
rotation or moment

0= (t), -(a,t) = % (t), 'i.(t) - _,_. (11)

Note that the boundary conditions applied to the first order system
(9) require the time integral of boundary forces or moments applied to the
beam. It is easy to confirm that the transfer functions relating forces or
moments to displacements or rotations as derived from either equations (6)
or (9) are indeed identical and that the required integration is essential.

3.3 The Bernoulli-Euler Beam Model

The Bernoulli-Euler model is obtained from the Timoshenko model with
., *." . two additional assumptions:

1. rotational inertia is neglected, pI - 0

2. shear deformation is neglected, R - -+ 0

Assumption (1) reduces the second of equations (6) to

GA - - -(12)
a9X ax a x
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% Equation (12) and assumption (2) are now used to reduce the first equation
of (6) to

at2  aX2 l- "

Note that equation (12) along with assumption (2) leads to the following
expression for shear force

of=GA 0-)-- = ax -") (14)

Although (14) is commonly used in conjunction with the Bernoulli-Euler
model (13), it should only be used with caution. Equation (13) is valid

I only in the limit f --+ 0. We will return to this point below.

The boundary conditions (7) and (8) reduce to for a = 0, L

displacement or shear force (15)

'?(a,t) = 17.(t), "EI5 1'(,t = f.(t),|

and
displacement or moment (

I" '" _ = (,t) = o(t), EI(=(t)

P- Note that nonzero shear force is included as an admissible boundary con-
dition; however, the remarks following equatioi (14) apply.

Equation (13) can be reduced to first-order form by introducing a new
variable y (X, t)

I a2
• "- . -- =(17) ,

at A -,' (17)

a at p aX2'

and the boundary conditions associated with (17) are for a = O, L:

displacement or shear force
5' . 7*.-(a ,t) = I(t), (t), , = _ f (t) (1 8 )17, (= t)t) , 97 (0, , Y
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V a-drotation or moment

cabel ~ ), (ct) -- "a(t), v, = 0(), (19)

Observe that (17) is a parabolic system of the type (3). Equations (17- 19)
can be derived directly from (13) or from (9) upon invoking assumptions
(1) and (2). We should also note that a corresponding expression for shear

force obtains

Because shear force is often used as a boundary input with the Bernoulli-

Euler model, some further comment is warranted. It is a straightforward

matter to compute the transfer function between any applied boundary

input and the beam response, as is done, for example, by Kolousek [48].

In particular, consider the deflection response at z = 0, H0 (s), to a force

inputs at x = L, FL(S):

-~Hof V ) L cosh Acos A -1 F()(21)

~ ~ whee 'EI \3(sinh,\+sinA)L([' ,"where
pAL

4

IP EI

The transfer function in (21) has a branch point at the origin. This is

"~., true of any transfer function associated with a force input. On the other

hand, all deflection responses to torque inputs have meromorphic transfer

functions. Clearly, there is an issue concerning the Bernoulli-Euler model

with force inputs which must be settled before it can be used with any

confidence.

3.4 The "String" Model

In some situations, bending deformation may be negligible with respect to

N- I shear deformation, that is, 10[ < lOa/xl. In this case, the first equation
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of (6) reduces to
pA 2 2=A (z A(2

aJ
2  ax (22)

with boundary conditions for a = 0, L

displacement or shear force (23)
v7(a,t) = 17.(t) r.GA 8 "6 = f(t).

,ON This simple model is primarily useful for illustrative purposes. Again by
introducing the new variable v(z, t), equation (22) can be replaced by two
first order equations

a7 _ o (24)
at a(
av KGa7
at pax

which is to be solved with boundary conditions for a 0, L

displacement or shear force
7 v(a,t) = 7., V(a,t) = v.(t),. =/- p(

Note that our first order model is slightly different from that of Burns and
Cliff [29].

3.5 Distributed Elements with Wave Dynamics: Fre-
quency Response Calculations for State Space
Models

rY'. '.,,

We will be concerned with the computation of certain irrational transfer
functions and a resolvent operator. For our purposes, the res -ent can be

- considered as an integral operator with kernel called the Green's function.
In this section, we will consider explicitly the required computations for the

,* abstract objects discussed previously. To do so we will focus on hyperbolic
beam .odels for distributed elements. Such models can also be used for
elastic dynamics of beams, cables, etc. In the next section, we will discuss
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hybrid system models consisting of interconnections of these components
with rigid bodies and other lumped parameter models.

Consider a class of hyperbolic partial differential equations in one space
dimension 0 < z < L, arising from models such as (??) which can be
written (as in (2), (4))

ax(t, z) _a O(t' Z)
at A az + Bx(t,z) + Cu(t,z) (26)

subject to boundary conditions

Ez(t,O) + rz(t,L) = Df(t). (27)

Here, z is an n-vector valued state z E N"(O, L), u is an m-vector val-
ued distributed disturbance u E )M-( 0 , L), A, B are real n x n matrices
with A nonsingular and diagonalizable [30], and E, r are n x n matrices.
Controlability questions for systems of this type are considered in Russell
[30]. We remark that (28) is a concrete example of the transform of the
abstract formula (??). Thus it is clear that the resolvent for the operator
A : )C(0, L) - )"(0, L) defined by (26) and (27) is the integral operator

S.- fL G,(s, z, w) .dw. After taking Laplace transforms in the temporal variable
t, we obtain an equation

k (s, Z) =jGr(a, Z,W)Kf (8,W)dw + Hac(s,z)FP(s) (28)

-. , where
l.f (8,W) = z(o,w) - C&(8,w),

and k, U, P are the Laplace transforms of z, u, f, respectively. The function
" G,(s,z,w) is the Green's function [49],[50] for (26), (27) and HBc(s,z) is

a transfer function from boundary control to state. Since in most cases
of practical interest the control of flexible structures will be effected by
actuators whose influence functions are highly localized, we have formulated
our model with boundary control only.

- . A straightforward calculation leads to the following form for HEc

HBc(s,z) = (,z) [E + r(sL)] D (29)
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. where

whee (s,z) =e (30)

The Green's function for (26), (27) is the solution to

aG7 (s,z,w) = A-' [sI - B] G(s,z,w) + I6b(z - w) (31)
az

subject to the boundary conditions

EG7 (s,0,w) + rG7 (s,L,w) = 0 (32)

where b(.) is the Dirac delta function [49], [50]. From (31) we see that the
N14solution is discontinuous at the point z = w. After some computation, we

can write
SGr LEFT(SZW), forO< z <w

. 7 (s:.w) =I GrRIGHT(SZW), forw z<L (33)

with
GTLEFT(8,Z,W) 

= HBc(S,z)rt(s,-w) 
(34)

G.RIGHT(s,z,w) = -HBc(s,z)r-(s,L - w) (35)

3.6 Modeling of Hybrid Systems

In most applications, models for the dynamics of flexible structures will
4- ~ involve interaction between various elastic and rigid elements. In the par-

ticular case of flexible structures associated with large space structures,
.' .'- the potential topological configurations can be quite complex. Various ele-

-p ,ments such as beams, truss structures, cables, membranes, etc., may have
dominant distributed parameter effects. Typically a central body or bodies
represent large concentrations of mass with respect to the overall low mass
density of the flexible structure. These are most effectively represented by
lumped parameter models of their rigid body dynamics. Additionally, vari-
ous attitude control actuators can add concentrated inertia elements which
can be effectively modeled as lumped systems. Thus, carefully chosen lin-
ear, hybrid models can provide an effective tool for analysis of dynamics

32

p2t



of vibrations and their effect on small angle motions for complex space
platforms. In this section, we consider the structures and computations
of certain resulting transfer functions and the resolvent operator for the

. composite system along the lines of Section 1.

.. The concept of a mechanical impedance (terminology borrowed from
electrical network theory) has been used in structural dynamic modeling
for many years [48]. The dynamic stiffness method (application to space

,. :-structure modeling is reviewed in Piche [51]) uses this notion to compute
effective transfer function models for interconnected structures [52]. Our
approach here will follow along similar lines except that we will focus on
computing the resolvent operator for a hybrid structure by direct manipu-
lation of its kernel; viz, a Green's function. xxx A hybrid state space model
is constructed in Burns and Cliff [29] (where considerations are given for
approximation ad computation in the hybrid state space). We will consider

a hybrid state space as consisting of a direct sum of spaces X = XE 1 Xd
where Xd = tN, is the distributed part constructed on an appropriate

. Hilbert space of Nd-vector valued functions with the "energy" inner prod-
uct of (??) for a distributed parameter system (DPS) written in abstract
form (as in(V)

axd(t,z) = AXd(t, z) + Bu(t), (36)

with xzd(Z) = xd(O,z) E D(A) C . We assume that A generates a Co-
semigroup which is contractive (so that (??) is well defined). We ignore
contribution to (??) of the possible distributed control force. By taking
Laplace transforms in (36), we can write

kdsz)= [s I- AI-'B0(s) (37)
which is an abstract formulation for the transform of (??).

For structural control, we restrict attention to the hyperbolic problem
A' of section 1.3:

a| " z(t, Z) az,(t, z)
..-. aldt, - Aa, z + Bdxd(t, z) + Cdv(t, z) (38)

0 < z < L, subject to natural boundary conditions.

EXd (t,o) + rZd(t,L) = Dfd(t). (39)
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For this problem, equation (37) can be written

d(SZ) = f G, (s,z,w)XCI(s,w)dw + HBc(s,q) d(s) (40)

where
f(,, W) = zo(W) - C1'(s, W), (41)

Ad, Cd, Bd are matrices defined as in (2), f7 (s, w) is the Laplace transform o f
a distributed exogenous disturbance, and Fd(s) is an md-vector of inputs to
the DPS. Clearly, (38)-(39) can represent a disjoint collection of distributed
elements such as beams, cables, etc. (Conceptually, a version of (40) can
also be written for higher dimensional spatial domains, but we feel for the
current presentation that the required complexity of notation can mask the
simplicity of the underlying concepts (see Butkovskiy for details [50].)

Similarly, all lumped parameter (LPS) component models are combined
into a LPS state space model as

."1(t) = Atxt(t) + Btft(t), xO = xt(O) (42) J.

with xt E RN = X, a finite dimensional real space. By taking Laplace
transforms in (42), we write (analogous to (40))

kt(s) = RI(s)x ° + Ht(s)P'(8), (43)

where Rt(s) = [I1N, - At]-' is the resolvent for the (matrix) operator A,
-" and H(s) = Rt(s)B.

The hybrid state space X = Xt E Xd consists of elements

ze(t)1
°,44)

z(t,z) = Xd(t,Z) J(4
, which are N = Nd + Nrvalued functions of z E [0, L], t > 0. Finally,

the interconnection of component systems is resolved through a topological
' constraint relation consisting of m = md + m linear equations;

f (t) + KId(t,0) + KXd(t,L) + Kxt(t) = Eu(t) (45)
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where u(t) is a k-vector of control inputs to the hybrid system, K,, K 2 are
" m x Nd, K 3 is m x NI, E is m x k real matrices. The hybrid modeling

problem is to find an equation of the form (40) by solving (40), (43)-(45)
simultaneously for the hybrid state x(t, z). We provide the resulting model
in the following form:

k (S, Z) f LG7 (sz,w)K f(s,w)dw + k(s, z)x' + k(s, z)&(s), (46)

where f(s, w) is given in (41). The resolvent operator for the hybrid
system is

.1' R(s;A) = (,z,w) dw, R(s, z) (47)

where R(s; A) : X -+D(A) g X, G is N x Nd and k is N x Nt are matrix
valued functions given by

R(s, z) = IN,- Ht (s) (s) K 3RI(s), (48)
-HBC(S,z)Q 2 (S)

" G7 (s, z,Pw) = P(s,w) (49)Gr~slzW) G, (s, z, w) -HBC (s, z)Q 2 (S)

where

Q~)=[IM +Q(s)]- = 2 I S) (50)

Q(s) = IK3H,(), K, HDc(s,0) + K 2 HBC(,L)], (51)
S.J '-P(s,w) = KG,(s,O,w) + K 2Gr(s,L,w). (52)

Finally, the N x k transfer function matrix from boundary control to hybrid
state is

i,-.Ho H(C(,() ). (53)

- The derivation of (46)-(53) is straightforward and proceeds as follows.
43.' Substitute (40), (42) into (45) and solve for the interconnecting force F(s).
- 'This identifies the terms Q(s), P(s,w) above. Now substitute the appro-
e priate components of P(s) into (40), (42) and use the hybrid state model

(44).
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",.'J" In the next section we examine a modeling technique which permits the [
--._ identification of continuum models for extended structures with regular
i infrastructure.
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4 Homogenization of regular structures

In this section we consider the problem of modeling and control of a class

- ~of lattice structures, e.g., trusses. Their large size and repetitive infras-

tructure require special techniques for structural analysis to cope with the

large number of degrees of freedom. Approximations of such systems by
continua provide a simple means for comparing structural characteristics of

-* lattices with different configurations, and they are effective in representing

~: macroscopic vibrational modes and structural response due to temperature

and load inputs. Our approach to the construction of such models is based
on a technique for asymptotic analysis called homogenization. It has been
widely used in mathematical physics for the treatment of composite systems
like porous media for which one wishes to have an effective approximating

system with parameters which are constant across the structure. 1

Before developing the general features of the method and applying it to

U the treatment of lattice structures, we shall make a few remarks on other
work on continuum models which has appeared in the recent structural
mechanics literature.

Noor, et. al. [20] use an energy method to derive a continuum approx-
imation for trusses with triangular cross sections in which the modal dis-

y m placements of the truss are related to a linearly varying displacement field
for an equivalent bar. Plates with a lattice infrastructure are also treated.

!! .-. In Dean and Tauber [9] and Renton [19] exact analytical expressions for
the solutions of trusses under load were derived using finite difference cal-

culus. By expressing the difference operators in terms of Taylor's series

Renton [37] was able to derive continuum approximations to the finite dif-
ference equations resulting in expressions for equivalent plate stiffnesses, for

- example. In a recent paper Renton [37] used this approach to give equiv-
alent beam properties for trusses, which complements the earlier work of
Noor, Anderson and Greene [22], and Nayfeh and Hefzy [21]. (See also
(Anderson 122]).)

'See, for example, the papers of Larsen 1141, Keller 1131, and the reports of Babuska 121
for applications and discussions of design techniques.
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In most cases a continuum model is associated with the original (lat-
tice) structure by averaging the parameters of the lattice over some natural
volume (e.g., of a "cell" of the structure) and identifying the averaged pa-
rameter value (mass density, stress tensor, etc.) with the corresponding
distributed parameter in the continuum model. A specific form for the
continuum model is postulated at the outset of the analysis; e.g., a truss
with lattice structure will be approximated by a beam, with the beam dy-
namical representation assumed in advance. While this approach has an
appealing directness and simplicity, it has some problems.

First, it is very easy to construct an example in which the "approx-
imate model" obtained by averaging the parameters over a cell is not a
correct approximation to the system behavior. This is done in subsec-
tion 4.1.2 Second, one cannot use this procedure to obtain "corrections"
to the approximation based on higher order terms in an expansion, which
may sometimes be done in an asymptotic analysis. These terms can be used
to describe the microscopic behavior (e.g., local stresses) in the structure.
Third, the averaging method (averaging the parameters over space) does

not apply in a straightforward way to systems with a random structure,',! since the appropriate averaging procedure may not be obvious.' Fourth,

the method cannot be naturally imbedded in an optimization procedure;
and controls and state estimates based on the averaged model may not be
accurate reflections of controls and state estimates derived in the course of a
unified optimization - averaging procedure. In particular, the method does
not provide a systematic way of estimating the degree of suboptimality of
controls and state estimates computed from the idealized model.

In this work we use a totally different technique called homogenization
from the mathematical theory of asymptotic analysis to approximate the

* dynamics of structures with a repeating cellular structure. Homogenization
,- produces the distributed model as a consequence of an asymptotic analysis

carried out on a rescaled version of the physical system model.

2See the numerical experiments in (Bourgat 171).
SHomogenization methods do apply to systems with a randomly heterogeneous struc-

ture, see (Papanicolaou and Varadhan [18]) and (Kunnemann 139]). We shall treat such
systems in a subsequent report.
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Unlike the averaging method, homogenization can be used in combina-
tion with optimization procedures; and it can yield systematic estimates for
the degree of suboptimality of controls and estimators derived from ideal-

* . ized models. While our results are stated in terms of simple structures, they
demonstrate the feasibility of the method; and they suggest its potential in
the analysis of structures of realistic complexity.

In subsection 4.1 we give an example derived from (Bensoussan, Lions,
and Papanicolaou [5]) illustrating some of the subtleties of homogeniza-

~. . tion, particularly in the context of control problems. In subsection 4.2 we
derive a homogenized representation for the dynamics of a lattice struc-
ture undergoing transverse deflections. We show that the behavior of the
lattice is well approximated by the Timenshenko beam equation; and we
show that this equation arises naturally as the limit of the lattice dynamics
when the density of the lattice structure goes to infinity in a well defined
way. The problem of vibration control of a lattice is posed and discussed
in subsection 4.3. In subsection 4.4 we derive a diffusion approximation
for the thermal conductivity of a one-dimensional lattice structure. This
property is useful in analyzing new materials for large space structures.

Acknowledgements: We are grateful to Professor George Papanico-
laou for bringing Kunnemann's paper to our attention and to Drs. A. Amos
and R. Lindberg for their comments on an earlier version of this work.

* 4.1 A one-dimensional example
-J

From (Bensoussan, Lions, and Papanicolaou [5]) we have the following ex-
ample:• ",d du'(x)

- +d[a'(z) ] = f z),x E (Z0,X1) (1)

S(X")= 0 =t(xi)
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where a'(z) d_ a(x/c), and a(y) is periodic in y with period Y, a(y) a >
0. It is simple to show that

~HI~uIr u~)2 +dd I'dx < c (2)

and so, u' -- u weakly in the Hilbert space H'.' Moreover,

.' ~ ~a ---M(a) dri1fYc

at M () (y)dy (3)
I--

and it is natural to suppose that u --+ u with the limit defined by
1)

d [Ma) d u( f(x),x E (xo, x1) (4)

U,... ) U(X)_. u zo) = ts xi

This is untrue in general (Bensoussan, Lions, and Papanicolaou [51, pp.
8-10). The correct limit is given by

.A.

d d
- [d cre u(X)] =f(X),zov g (XOngt ) (5)

as(X0) = ts(z1 )

with
(6)

a
In general, M(a) > aL; and so, the error in identifying the limit, (4) versus
(5), is fundamental.

The system (4) corresponds to averaging the parameter a" (x) over a
natural cell; a procedure similar to that used in the past to define continuum
models for lattice structures. As (5) shows, the actual averaging process
can be more subtle than one might expect, even for simple problems.

°" 'Here H' d, {u E L2 (zozI) I1U11H, < 0c)
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4.1.1 Homogenization of the example

To see how (5) arises, we can use the method of multiple scales which applies
to a variety of perturbation problems. Suppose

%IUI(x) () = ts(' O(x,1 + Cui(X,- +.. (7)-- C. .Cz

that is, we suppose that u' depends on the "slow" scale z and the "fast"

scale y dtf x/e; and we adopt an ansatz which reflects this dependence.
Using the identity

d X au 1 au wih X 8
*[U(X, )] = - + 7, with y =(8"

dx C C '

then (1) may be rewritten as

- + 1 a ){a(y)( 1 a 0 u
- 8x +( + ax ( + L +-u+...I}=f (9)

Simplifying and equating coefficients of like powers of c, we find first that

, -.. -[a(y) -uol = 0. (10)

The assumptions on a(Y) imply

uo(X,y) = Uo(x) (11)

i.e., no y-dependence. The coefficients of c satisfy

a9 a9 a a a a
{-[a(y) uo] + -[a(y)uo] - -[a(y) ul} = 0 (12)a9Y a9x a9x aY aY ay

or

a a 4a a9u0 13aI [ay"9 ul]- ay 49 (3

-

If we look for ul in the form

JA au0  14u,(x,y) = -X(Y) + fi(x), (4)
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then the corrector x(Y) must satisfy

d a")d X(Y) -da (15)".'y - a y  dy

and be periodic. That is,

dX2 ia~y) -y = a~y) + c (16)

which has a periodic solution (unique up to an additive constant in y) if
and only if

± Y11 -IYo= (17)
YO a(y)

which implies
"'" -I def

c =-[M()]- (18)
* a

*We obtain an equation for uo(x) from the solvability condition for u2(X, y).
Equating the coefficients of co in the expansion, we have

- [a(y)-uI - [a(y) ui1 (19)

a1 [a(y) 49Ui] - a[a(y) -9soI1= f(z)

This has a solution U2 (X,y), periodic in y if and only if

1Y ,9~ 49 d2uo(x)
f o 0 L(y) + -La(y)x(y)j - aoy)5--xy)a y) d 2  (20)

+f (X) = 0
where we have used (14). The integral of the second term is zero, since it is

the integral of the derivative of a periodic function over one period. Using
(16) and (18), (20) reduces to

+ , W 0 (21)

(plus the boundary conditions) which is (5) (6).
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" 4.1.2 Control and homogenization of the one dimensional sys-
tem

One of the simplest (stochastic) control problems associated with the pre-
ceding system is defined by the Hamilton - Jacobi - Bellman equation

d u(~'~ 1 xb(du) = inf[ v2 + g(x,y )V' cu' (22)a-) -. -~' lb(-)- (22)

Sz E O, u (x) = 0 on r dO

where 0 is an open interval in R, and each function a(y), b(y), and g(z, y)
is periodic in y with period Y0. We assume that a(y) > a > 0 and that
c >0, and that the controls v take values in R.

This Bellman equation corresponds to the stochastic control problem

U'(x) = inf J'[v(.)]

-J-3 {, v)[e-f ( [e E ,)dIdt} (23)

dz'(t) = a(x', )dw(t) + b(z', )dt + G(x', -,v)dt

X'(0) = xE O,t > 0.

with C2 (x,y) _ a(y), b(x, y) = b(y), G(x,y,v) = g(x,y)v, l(x,y,v) =Iv,

and c(x,y,v) = c, a constant in (22). Each function in (23) is assumed
to be periodic in y with period one. We are interested in the behavior
of the optimal cost and control law for (22) in the limit as c --+ 0. The
stochastic control problem (23) was treated in (Bensoussan, Boccardo, and
Murat [4]); the analysis here uses different arguments which emphasize the
computational aspects of the system.

Evaluating the infimum in (22), we have the nonlinear system

a(- + -b(-)u - cu. - -g 2 (x, )(t4)2 = 0 (24)

z O, u'(z)Ir = 0.
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The analysis of the control problem involves homogenization of this system.

Let
,. A, = a(y),., + b(y)O, (25)

with its formal adjoint defined by

A, = a, a(y)a,.] - a, I(b(y) - a,(y)).]. (26)

, The problem
- A*m = y r(y) periodic (27)

m > 0,J m(y)dy = 1

has a unique solution m(.) on Y - SO, the unit circle, with
-I.

o< m<(y) < ,<oo. (28)

So m(.) is a density on Y. We assume that b(.) is centered

f m(y)b(y)dy = 0. (29)

As a consequence the system

=I~y b(y) (30)

Sx (Y) periodicJy X(y)dy =0

has a well defined solution. X(') is the corrector associated with the problem.

,. -As before we set y = x1 and look for uc in the form

i ,": (X) = '(X,Y) = o(X,Y) + EU,(X,Y) + ..,(31)

and we use

a.0c,)= ) ?x(x,Y) + !0.(x, Y),j = Xl (32)

,: .. (x,Y) = €.(Xy) + 24x.,xy) + x,Ayy).
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Substituting in (24), we have

a(y)[uo.. + 2£tso2 y + I uovyI + a(y)lcu1 2 2 + 2u,,,, + 1tUiVV]

± a(y)k 2 U2,= + 2£tL 2 zy + tL2 yy]

+ b(y)[uo. + UttY] + -b(y) [ctl 1 + ul.] (33)

+ 1b(y)E'2tL, + IEt2 y) -CltUo + CUI + £2U2]

-g2 (X, Y U + EU 1 . + C2
tUL2 .) + -(U0 y + EMiy + C U 2 ,)J 2 = (C2 )

The last term is

2 ( 2 Y 2')

+E(2uoztli2 + 2u 12uly + 2ulU 2 . + 2uoz 22 )] + 0(E2)

Equating coefficients of like powers of iE, we obtain

(f-){a(y)uoyy + b(y)ts0 y -y =g (xi) 0  ) (35)

((C1 ){a(y)si,, + b(y)uli, + 2a(y)uo22  (36)

+b(y)uo. -g 2 (, ) UOzUO = O}

(O{y)2 + b(jy)U 2 1, + 2a(y)usi2 , + b(y)ul. (37)

+(Y)uo2 2 _ Cts 0 _ !g2 (X, Y)u 2 _ g2(X, Y)UO.UI. o }.
Choosing uo(x, Y) = uo(z), which must be justified, satisfies (35). We can
then solve (36) by choosing

UIx )= -X(Y)uoz(x) + &1I(z). (38)

Equation (37) has a solution for ts2(X,i,) if

1y m(y){-2a(j)Xvtso 2 2  b(y)Xvtsoz + a(y)ttoxz (39)
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-CU -g )(12xy)u0.}dy -0..~~A 2--

_ This gives an equation for uO(X)

quoz - csO --- 2s02

where
q ='~m(y){a(y)[1 2X,,(y)] - yby)d

r m(y)g2 (x,y)[1 - 2X,,(y)]dy.

Remark. From the definition of A, and the corrector X(y) we have

Sm(y)b(y)x(y)dy =+ b(y)xy]X(y)m(y)dy (42)

-JX(y)a9v,a(y)X(ym(y)]dy - JX x(y) 9y jb (y) X(y) m(y)]dy

Also, using (30),

i ~m(yb(y)X(y)dy = X (ya(y)m(y)Xyy(y)dy (43)

P -Jf X(yWb(y)m(i,)Xjdy +2f X(y)Xy,6j[a(y)m(y)jdy

Adding these two expressions, we have

* ~. 2f m(y)b(y)X(y)dy

* ~= 2f x(yWa(y)m(y)Xvydy +2f x(y)xy[am~ydy (4

S2J a9,[xamjxydy +2f x(y)xyjam]jdy -2/ X&'a(y)m(y)xvdy

Thus, q may be rewritten as

q f] m(y){a(y)[l 2X11 + X2]}dy (45)

f m(y)a(y)[1 - x,12dy

YY
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and clearly q > 0.

The term q in (41) summarizes the effects of the averaging process
-.~ on the uncontrolled system. The homogenization process interacts with

the control system through the term r, whose form would be difficult to
"guess" from simple averaging procedures.

4.2 Continuum Model for a Simple Structural Me-
chanical System

4.2.1 Problem definition

Consider the truss shown in Figure 1 (undergoing an exaggerated defor-
mation). We shall assume that the truss has a regular (e.g., triangular)
cross-section and no "interlacing" supports. We assume that the displace-

I ments of the system are "small" in the sense that no components in the
system buckle. We are interested in describing the dynamical behavior of

- ' - the system when the number of cells (a unit between two (triangular) cross

sections) is large; that is, in the limit as

def t/L 0. (46)

.06

f %We shall make several assumptions to simplify the analysis. First, we
shall assume that the triangular sections are essentially rigid, and that all
mobility of the system derives from the flexibility of the members con-
necting the triangular components. Second, we shall ignore damping and

P .- frictional effects in the system. Third, we shall confine attention to small

transverse displacements t1 (t, x) and small in plane rotations 4(t, x) as in-
dicated in Figure 1, ignoring longitudinal and out of plane motions and

torsional twisting. Fourth, we shall assume that the mass of the triangular
cross members dominates the mass of the interconnecting links.

Systems of this type have been considered in several papers including
j[20], [21], [22], and 137.] In those papers a continuum beam model was

47
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Figure 1: Deformed truss with regular cross-section.

'- hypothesized and effective values for the continuum system parameters were
computed by averaging the associated parameters of the discrete system.
Our approach to the problem is based on homogenization - asymptotic
analysis and is quite different.

The assumptions simplify the problem substantially, by suppressing the
geometric structure of the truss. We can retain this structure by writing
dynamical equations for the nodal displacements of the truss members.
For triangular cross sections nine parameters describe the displacements of
each sectional element. The analysis which follows may be carried over to
this case, but the algebraic complexity prevents a clear presentation of the
main ideas. As suggested in (Noor et al. 1201) one should use a symbolic

manipulation program like MACSYMA, SMP, Reduce, etc., to carry out
the complete details of the calculations. We shall take up this problem

C': on another occasion; for now we shall treat the highly simplified problem
which, as we shall see, leads to the Timoshenko beam.

We shall begin by reformulating the system in terms of a discrete el-
ement model as suggested in (Crandal et al. 1381); see Figure 2. In this

model we follow the displacement i1h(t) and rotation O(t) of the ih mass
M. The bending springs (k') tend to keep the system straight by keeping

." 48
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Figure 2: A lumped parameter model of the simplified truss system.

the masses parallel and the shearing springs (ki) tend to keep the masses
perpendicular to the connecting links. We assume small displacements and

-.rotations so the approximations

sin (t) s ¢,(t) (47)

.I ~tan-lfrn(t)/f] rh)/"

,* are valid.

' '- In this case the (approximate) equations of motion of the 0"h mass are'

.-. . d2  lk20i, 1 /+1(t) - M(t)1 -
r-- k'{[(48)

dt2  r

Os-( -e

IND t• ... ~~~dW = M{ (t) - 97s+i(t)] , }(

"The spring constants depend on i since they represent the restorative forces of flexed
bars, bent by different amounts.
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where we have normalized M 1 and defined

1 - (50)

and similarly for S,¢0.

To proceed, we shall introduce the nondimensional variable c = t/L and
rewrite the system (48)(49) as

. .- !K{V'+,4(t) - O'} + V {K6V ¢,(t)} (51),.:.dt2 r

.d12 d' - -V {K.[V rt,(t) - 0'(t)]}

where
; K= t, Kb' kt (52)

.Vf+ T= ],i 7d, = -[1i - n-i].

Normalizing t 1, we associate a position x E [-1/2, 1/2] with each mass;
and we introduce the notation

"7 (t,xi) = 17i(t), (t,x,) = O,(t). (53)

*_ Z Having normalized = 1, we have c = t and x+1 = xi+1= xi + c. Let
Z {xj} be the set of all points in the system. In this notation

(V '77)(t,X) = [/(t, x + E) - 17(t, x)] (54)

(V-, 7 )(t, x) =-[1 7 (t,x) - ,(t,x - ,x Z

and the system is

d2 Of (t x)
d2 -_(x,){v', '(t, x,) - 0'(t,x,)}

Fit (t i V '- K .(x,)[V '+,7(t,x,) - '(t x,)]},x E

""' 50
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The scaling of (55) may be interpreted in the following way: Formally, at
.N least, the right sides of both terms in (55) are O(c 2 ). This implies that the

time variations are taking place in the "fast time scale" r = t/e. Also, the
*- spatial variations are taking place in the "microscopic scale" z which varies

in E-increments (e.g., xj+d = xi + c). Introducing the macroscopic scale
. z = cx, and the slow time scale a = cr, we may rescale (55) and observe

its dynamical evolution on the large space-time scale on which macroscopic
events (e.g., "distributed phenomena") take place.

Rewritten in this spatial scale, the system becomes

do'(t,,') _ 1

+ 5)5)i h ii as,(56) K. .z' {.b.2 Maheatca analysisc

C2

d 2 proe , geneKalize[e prble 5) -(t, z by (57)ali
where d2 E K(j)b+jtz),O

b"= cV- = 0(m) in c. (58)

The essential mathematical problem is to analyze the solutions 0', thof

(56)(57) in the limit as 0.

4.2.2 Mathematical analysis

To proceed, we shall generalize the problem (56) (57) slightly by allowing
K, and Kb to depend on:z as well as z/c. This permits the restoring forces

wela nlcldfratos euetemto.o utpesae;ta
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On smooth functions ¢(z, z') the operators 6"' satisfy

(6'+t)(z,y) = (z + c,y + 1) - ¢(z, y)
O (z, y + 1) - ¢(z, y) + tk(z + C, y + 1) - ¢(z, y + 1) (61) :

*o 1 2 t2¢ k

(S + 0)(,Y + (,Y+1)+-f-(z, Y +1 )O((S)

(6-¢)(z,Y) = O(z, Y) - k(z - C, - 1)

-Nk = (z,y) - P(z,y - 1) + P(z, y - 1) - ¢(z - Cy - 1)
vv 1¢ 2 a0 +C3

(S-0)(z, Y) -f2(z,Y + 1) + - 1)+ o(0) (62)
* - z )+2 aZ2  

-

We assume that 0' and t7' may be represented by

0. €(t,z,y) = 0o(t,z) + C,(t,z,Y) +... (63)

i1 (t,z,Y) = 77o(t,z) + 0,7,(t,z,Y) + ...

and substituting (63) in (56)(57) and using (60) (61)(62), we arrive at a
" "-sequence of equations for (0o, io), (01,ir),... by equating the coefficients

* -.* of like powers of c.

Starting with E- 2 , CI, (o,..., we have

2 S+[rK(z,y)S-0o(t,z)] = 0 (64)

which is trivially true from (62) (63). The same term involving iio(t,x)
from (57) is trivially satisfied by the assumption (63). Continuing

-j++ rKb(Z,)S- (t,Z,,) } (65)

- +K.(z,y){S+i7o(t,z) - ¢0 (t,z)}] = 0

which may be solved by using the corrector x,(z,y) and taking

' 1,(t,z, Y) = x,(z,Y)0o(t,Z) (66)
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with
S'{rKb(z,y)S-X#(z,y)} K.(z,y) (67)

- If we regard z as a parameter in (67), then there exists a solution xO, unique
up to an additive constant, if Kb(z, .), K, (z, .) are periodic in y, if there exist
constants A and B so that

0K<A <Kb(z,y) B <oo (68)

and if the average of K.(z,-) is zero

1fL/2
I J-L/ K.(s,y) dy =0. (69)

Let us assume that (68) (69) hold, and

0 < A < K.(z,y) B < oo. (70)

P Considering (57), the O(c - ) term in the asymptotic expansion is

I[S- (K.,(z, y) (S 171(t, z, y) - Oo0(t, z))}= 0. (71)

Again we introduce the corrector x, (z,y), and take trh in the form

S0 (t,.,Y) = X,,(Z,y)¢o(tZ) (72)

which gives the equation for the corrector

s-{K.(zy)[S'xCzy) - 11} = 0 (73)

" or
S-{K.(z,y)S'x,(z,y)} = K.(z,y) - K.(z,y - 1) (74)

SL"By hypothesis the right side in (74) is periodic in y and has zero average
(69). Hence, (74) has a periodic solution, unique to an additive constant.

: :.? Continuing, the 0(c 0 ) term in (56) is

S {r K (z,y)S - 02(t,z,y)} + K.(z,y)[S+,(t,,L) - O,(t, , )1
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+ K.(,y) o(t,z) + (Y) - (t, Z

, ~~~0 :- S{K(~) ¢(t, Z,Y) } + -{rKb (z, y + 1)}z¢(tz )

:- : + -{rx (z, y + 1)}Oo(t, z) - =2- °- 0.
5Z2 at2

This should be regarded as an equation for 02 as a function of y with (t,z) as
parameters. In this sense the solvability condition is as before, the average

* of the sum of all terms on the left in (75), except the first, should be zero.
We must choose 4o so that this in fact occurs; and that defines the limiting
system.

* Using the correctors (66) (72), we must have

* a2, 0  a240  +Averag .,){- -0-¢0
., Average ()t - -z 2  [S (rKb(z,y)) + S+(rKb(z,y)x.,(z,y))I

.- 9-(rK (z, y + - K. z, y) (76)

azaz a
01 (: -o[ (zv y+ 1)) + S+(rKb(z,y) -x0(ZY))

P +K.(z,y)(S+x (z,y) - x,(z,y))]} 0

Defining the functions EI(z), G(z) by the associated averages in (76), the
averaged equation is

a2 00 a E(z) 4 ) + G(Z)47 H(z)Oo (77)
at2 = E' az Zj~

which is the angular component of the Timoshenko beam system (Crandall

et al. [38] p. 348).

Arguing in a similar fashion, we can derive the equation for the macro-
scopic approximation displacement of the lattice system in terms of the
"equivalent" displacement qO(t, z) in the Timoshenko beam system

,a 2r/0  '78' j92 Ror -9 o [N (z) " 7oa - 4o(t,z))] (78)
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4.2.3 Summary

We have shown that a simplified model of the dynamics of the truss with
-. .. rigid cross sectional area may be well approximated by the Timoshenko

beam model in the limit as the number of cells (proportional to L/) be-
"comes large. The continuum beam model emerges naturally in the analysis,
M as a consequence of the periodicity and the scaling.

To compute the approximate continuum model, one must solve (67) and
(74) (numerically) for the correctors and then compute the parameters in
(77) (78) by numerically averaging the quantities in (76) (and its analog

* for (57)) which involve the correctors and the data of the problem.

f,

- 4.3 Homogenization and Stabilizing Control of Lat-
- tice Structures

In this subsection we show that the process of deriving effective "contin-
uum" approximations to complex systems may be developed in the context
of optimal control designs for those systems. This procedure is more effec-
tive than the procedure of first deriving homogeneous - continuum approx-
imations for the structure, designing a control algorithm for the idealized

' "' model, and then adapting the algorithm to the physical model. In fact,
separation of optimization and asymptotic analysis can lead to incorrect
algorithms or ineffective approximations, particularly in control problems
where nonlinear analysis (e.g., of the Bellman dynamic programming equa-
tion) is required.

:. We shall apply the combined homogenization - optimization procedure
described in subsection 4.1 (based on (Bensoussan, Boccardo, and Murat
[41)) to the problem of controlling the dynamics of lattice structures like the
truss structure analyzed in the previous subsection. We shall only formulate
a prototype problem of this type and discuss its essential features.

Consider the model for the lattice structure analyzed in subsection 4.3
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Figure 3: Truss with transverse actuator forces.

with control actuators added. The truss shown in Figure 1 is again con-
strained to move in the plane and torsional motion is excluded to simplify
the model and confine attention to the basic ideas. Now, however, we in-
clude a finite number of actuators acting to cause transverse motions. The
truss with actuator forces indicated by arrows is shown in Figure 3. The

* corresponding discrete element model is shown in Figure 4.

Suppose that the physical actuators act along the local normal to the
truss midline as shown in the figures, and that the forces are small so that
linear approximations to transcendental functions (e.g., sinoi ; Oj, etc.)
are valid. Then the controlled equations of motion of the discrete element
system are (recall equation (51))

'__ " - K;{V~ 7 (t)- + f+fK
dt2  r 

(79)

d - -2 .[iv,(t) - ¢:(t)]} + I(ii,) u (t)
d. .i=j

where the notation in (52) has been used,
:.:.: { 0 i36i so

( {(80)

::!: -.. 6
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p Figure 4: Discrete element model of the controlled truss.

and i,,j = 1,... ,m are the locations of the actuators. Hence, if b(i,i) = 0
for allj = 1,. .,m there is no actuator located at the ijh point which corre-

sponds to the physical point x E [0, LI. The number m of actuators is given
at the outset and does not, of course, vary with the scaling. The control
problem is to select the actuator forces as functions of the displacements
and velocities of components of the structure to damp out motions of the
structure. Measurements would typically be available from a finite number
of sensors located along the structure. We shall not elaborate on this com-
ponent of the model, and shall instead assume that the entire state can be
measured. To achieve the stabilization, we shall associate a cost functional
with the system (70). Let

: (t) = 1- (t), . . (')]' (81) ;

be the vector of control forces, and

ccN

,.= Z{aj:() + b.[l(t)I,

+ l ,! :(t)]2 + td':(t)] (82)

-, '.-;57
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+ E b(i,i,)u2 (t)}e-'-t dt
ji=l

where (a,,bi) and (ai,,O) are non-negative weights. Formally, the control
problem is to select 6(i,i)tuj(t),i = 1,... ,N,= 1,.. . ,m to achieve

inf J7[u(.)] (83)
U', )

subject to (79) (80) and the appropriate boundary conditions. The case
I - 0 corresponds to stabilization by feedback.

The analysis of this control problem is based on the scaling used in
subsection 4.3, equations (51) - (58). Let r = t/e be the fast time scale,
then __ N

C; J [u(')] = ] 2E{a4 (r)1 + b,[{a(r)]1

+ aC2[ ,(r)]2 + f2[i(r)]2 (84)
in+ U26(i, i)u(r)} e-"dr

with ¢(r) =¢(fr), etc.

Let ,r, ) be the state vector of the system (79) with4 = 14T,... N

and similarly for the other terms. Let V = V1 1(,, , ) be the optimal
value function for the problem (79) (84). Then the Bellman equation asso-

ciated with (79) (84) is
N

£EZ1V,, + vV,,]i= 1 'Z

N 1

t +1 T 1+[K'V _i]}V ,,
r N

Nm

-- +, {- -[ i(V-T - ¢,]V,(85)

m (C l y (i, i,),(,iVn4 + b(iij)u2]}
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+( E-j+bn +dZ~i4ai 1- +~Lj fl?) ~-' ',,j0.
t=1

Remarks:

b1. Note that the minimization in (85) is well defined if the admissible
range of the control forces is convex since the performance measure
has been assumed to be quadratic in the control variables 6(i, ij)u.

2. Since we have not included the effects of noise in the model, the
state equations are deterministic and the Bellman equation (85) is a
first order system. To "regularize" the analysis, at least along the

-" lines followed in conventional homogenization analysis, it is useful to
include the effects of noise in the model and exploit the resulting

- :coercivity properties in the asymptotic analysis.

3. If we introduce the macroscopic spatial scale z = fx, the mesh {xi},
and the variables

:(tz:) = (t), (tz,)= :(t), etc. (86)

then the sums may be regarded as Riemann approximations to inte-
grals over the macroscopic spatial scale z. The asymptotic analysis of
(85) with this interpretation defines the mathematical problem con-
stituting simultaneous homogenization - optimization for this case.

S4.4 Effective conductivity of a periodic lattice

In this subsection we consider a version of a heat conduction problem
treated by Kunnemann. Simple expressions for thermal properties of com-

posite materials, have been derived in the past using homogenization tech-
* . niques. The derivation of effective conductivities for discrete structures

.- is useful for assessing the thermal response of such structures in variable
environmental conditions.
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% 4.4.1 Problem definition

Let Z = {0, ±1, ±2,.. .} and Z' = Z x ... x Z (d times) be a d-dimensional
lattice. Let c > 0 be a number small relative to 1. We want to describe
the effective conduction of thermal energy on the E-spaced lattice EZd. Let

."" .. ,. = (0,0,.. .0,1,0,.. . 0 )T with 1 in the ith position, i = 1,2, ... ,d. If x is
6 ,a point in eZ', then x ± ce,, 1 < i < d, are the nearest neighbors of z. Let

a± (x), x E Z ,I < i < d, be the two functions defined on the lattice, and

ai (x) d'' +(x) = (+ ,), Z,1 < i < d (87)

0 < A < a,(z) < B < 00,Vze Z < i < d (88)

ai(x) is periodic with period t > 1 (89)

Nex lein each direction, 1 < i < dI. Next let

ai±(x) = a,+(X),x E cZd,l <i < d. (90)

Equation (88) means that the conduction process is reversible and that
p the conductivity ai(x) is a "bond conductivity," i.e., independent of the

direction in which the bond (x, x + ej) is used by the process. Equation
(90) means that the configuration of bond conductivities a+ (.) on CZd is
simply a.±(-) on tZd "viewed from a distance." Assumption (89) imposes a
regularity condition on the physics of the conduction process. An assump-
tion like this is essential for existence of a limit as c - 0. In one dimension
the situation is illustrated in Figure 5 and Figure 6. A system similar to
this with random bond conductivities was treated by Kunnemann [39] by

imposing some ergodicity properties on the bond conductivities.

One can associate with this system a random Oump) process

{X' (t,X),t > 0,xE Zd}

"eThe period may be different in different directions.
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Figure 5a. Conductivity on unscaled lattice with period 1 6.

Figure 5: Conductivity on unscaled lattice with period 1 = 6.
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S-" Figure 5b. Conductivity on (-scaled lattice, ..
"." ~~~i/ =z.r iE Z, periodd =I-6c.

Figure 6: Conductivity on i-scaled lattice, 1Y= ex, x E Z, period f = 6c.
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on the c-spaced lattice.7 In effect, as c 0 , {Xl} converges to a Brownian
motion on the lattice; and the main result of the analysis is an expression for
the diffusion matrix Q = [q; i,j = 1,2,..., d] of this process. This matrix
describes the macroscopic diffusion of thermal energy in the system. It is
the effective conductivity.

We shall carry out the asymptotic analysis of this system in the limit
as c -- 0 using homogenization. Let

U) ( - -- - (X)J (91)

(VtU) (X) = -u(z + cc,) - u(X)]

z E cZd, 1 < i < d,

for any u square summable on cZd or square integrable on )£d with ei the
.*th natural basis vector in )Zd Then

: au o,(t, x) X
= - [a+VU, (t,X) (93)

atc
def %

,= L xu)(t,z)

q,- is the diffusion equation on the c-spaced lattice with density uW(t, x) and
." '" conductivity ai(x/c). We are interested in an effective parameter represen-

tation of the thermal conduction process as e --+ 0.

Remark: Although probabilistic methods are not required in the anal-
ysis, the associated probabilistic framework has a great deal of intuitive
appeal. The operator V may be identified as the infinitesimal generator of

a pure jump process X1 (s) in the "slow" time scales t; (Breiman [81).
% :Moreover, V is selfadjoint on cZd with the inner product

(f,g) L"J 1 f(x)g(x). (94)

ZEZ4

'Definition of this process is not necessary for the analysis, but it bolsters the intuition.
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Hence, the backward and forward equations for the process X'(s) are, re-
spectively,

ap(YtX) -[L'p'(y, t.)1(x) (95)

p'Cy, tl) - [L'p'(., tlx)](y)
at

So the process is "symmetric" in the sense of Markov processes (Breiman

The asymptotic analysis of (93), when interpreted in this context, means
that as the bond lattice is contracted by c and time is sped up by C 2 ,

- the jump process {X'(s)} approaches a diffusion process with diffusion
matrix Q. In other words, on the microscopic scale thermal energy is
transmitted through the lattice by a jump process; but when viewed on a

. macroscopic scale the energy appears to diffuse throughout the lattice. The
microscopic physics are described in (Kirkpatrick [11) and (Kittel [12]).
The approximation developed belo w for a periodic lattice is similar to
the one developed by Kunnemann for a random lattice. This similarity
demonstrates the robustness of the method, and the limited dependence of

S'"the macroscopic properties of the medium on the details of the microscopic
Svariations of the structure.

Because the basic problem (93) is "parabolic," we can introduce the
4 -. probabilistic mechanism and make use of it in the analysis. In the "hyper-

bolic," structural mechanical problems we treated before this device was
.P.. not readily available.

4.4.2 Asymptotic analysis-homogenization

The essential mathematical step is to show strong convergence of the semi-
n group of L', say
.-. T"(t) def eL__T(t) = eLf as -- 0 (96)"
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and to identify the limiting operator0

* This is accomplished by proving convergence of the resolvents

I-V + aV--*[--L +i a]-' as E - 0 (98)

That is, if f is a given function and

u + al
.' "4.,

then W'- u in an appropriate sense.

The method of multiple scales will be used to compute the limit. Be-
cause the conductivities a,(x) in (93) do not depend on time, we may work
directly with L' rather than the parabolic PDE (93) (cf. (Bensoussan, Li-
ons, and Papanicolaou [5) Remark 1.6, p. 242). The method of multiple
scales is convenient because it is a systematic way of arriving at the "right
answers" - something which is not always simple in this analysis.

Bearing in mind (99), we consider

(VsW) (x) f (x) (100)

with u-(x) in the form

UT(X) = uto(x, ipl + scu( , l + be s 2( , + . . (101)

with the functions u(i, Y) periodic in Y E Zd for every j = 0, 1.(As it
turns out the boundary conditions are somewhat irrelevant to the construc-
tion of "right answers.") To present the computations in a simple form, it is
convenient to introduce y, = x/c, to treat x and y as independent variables,
and to replace y by x/ at the end.

Recall the operators V" from (93). Applied to a smooth function
u u(z xc), we have

M, U))(x,(Y) [u(X - (- e) - t(X Y)] (102)
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1 1

,.-[U(X,Y - e,) - u(x,y)] + -[u(z - ,e,,y - e,) - U(X, - e,)]

,,UJ( .y) - C(Xy - e,) + f (X, Y - ,,) + o)

where on functions 0( = )y)

0(V,-)(y) -(y - e,) - O(y) (103)

Defining
+)(Y) = 4(y + ei) - Oy) (104)

we also have

- U)(nz ,Y), +tu) - ) (105)

+( -0(,y+4) +0((2). , )

+' : -,V:-l ax(x;=, Y + e ,) ()_j

Now we substitute (101) into (100) and use the rules (103) (104). Equat-
* ing coefficients of like powers of E, this leads to a sequence of equations for

U0 , ul,. Specifically, (using the summation convention)

-(LV)(,y) = -- ()V- f'r

1 =i () 9:( .Y + oi)]+(C (+0e)".
1

-CV'[ajy)0u 1 x + e,)] + 0(c)F--Vi[a(Y) V tU2 (, Y) I + 0 (C) f f(X)

That is, labeling each term by its order in i

(C-2) V-[ai(y)VtUOj= 0 (107) i
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(CI) (v:[.(Y)-(xy + e,)] + V [a, (&)Vu I(xy)I 0 (108)

.~r.and (recall cV!' is 0(l) in c)2 I2 ax 4x

, ."1 , OZ~(xy , )Ouja,(y (x,y + e,)] (109) "
-V-a,()V+u(x,y)J = f(x)

From (107) we have

a(y - ei)[Uo(x,y) - Uo(x,, - e,)] (110)

* -ai(y) [to(x,y + e,) - ,o(x, y)] = 0

If we take uo(x, y) = uo(x), this is trivially true; and (108) simplifies to

"V- [a(y) -(x)] + V.[a(y)V-ut(x,y)] = 0. (111)

At this point we introduce "correctors." That is, we assume

..: ., (x, ) = (y) + fl( ) (112)
k=1 

'

with xk(') the correctors. Using this in (111), we have (again using the
summation convention)

V.[aj(y)V+'Xk(y)]5- + [ak(y - ek) - ak(y)]- =0 (113)

If we take Xk(Y) as the solution of

VI-ai(Y)V t xXk(Y)] + [ak(y - ek) - ak(Y)] 0 (114)

(we have to verify the well-posedness of (114)), then (113) is satisfied. (The

- term fi 1 (x) is determined (formally) from the 0(f) term in the system (101)

(106).)

Regarding the well-posedness of (114), note that

" "."V -[a (y)V +O ( y ) ]  -- 0b(y) (115)

"'8 6 6 "
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has a periodic solution on f which is unique up to an additive constant iff
the average of the function 0(y) over a period (ct) is zero; i.e.,

L
def1(16

This condition clearly holds in (114), and so, Xk(Y) is well defined (up to
an additive constant).

W~e shall determine the equation for tso(x) by using (112) (114) in (109).
* Using the Kronecker delta function 6,k, we have

1 a2 U0 9 8 UQ
2 aX~ ax iaXk

-V. [o(Nt -ajyVx 171 1
2' vad9vxa

-V[-yx~) V2 
--V-a(Y)V U2] = f(X).

S.The term in braces is zero from (114). To obtain the solvability condition
(116) for u2 , we introduce the average

IP symmetric part {-V 1 i ad(y)xk(y)]}(18

Then solvability of the equation for Ut2 gives the equation

agig = 0,x -A.). (119)

And this is the diffusion equation which defines the limiting behavior of the
system (100) in the macroscopic x-scale in the limit as c - 0.

" We can justify the asymptotic analysis by using energy estimates or
probabilistic methods as in (Bensoussan, Lions, and Papanicolaou [5)). (See

* also Kunnemann 1391).) We shall omit this analysis here.
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4.4.3 Summary

Returning to the original problem (93) for the evolution of thermal energy
on a microscopic scale, we have shown that the thermal density ul (t, x)
uo(t,x) as E -- 0 (in an appropriate norm) where

* a-uo (120)a; t 2 ,z: , ax

."with
1 L

q= -- {V+Lao(y)Xk(y)] + V-[ai(y)Xi(y)I} (121)
Lk=

with the correctors xk,k = 1,2,... ,d, given by

E ViJa1 (y)V+Xi(y)] = -[ak(y- ek) -ak(Y)l (122)
": i= 1

-:. Rk = 1,2,...,d

To compute the limiting "homogenized" model (120), one must solve the
system (122) (numerically) and then evaluate the average (121).

The fact that the original problem (93) is "parabolic" (i.e., it describes
a jump random process), enables us to exploit the associated probabilistic

., structure to anticipate and structure the analysis. In this way we can
anticipate that the limit problem will involve a diffusion process. T, fact,
the arguments used are entirely analytical and the limiting diffusion (120)
is constructed in a systematic way. It is not postulated.,

S,

'Probabilistic arguments can be used (Bensoussan, Lions, and Papanicolaou [5], Chap-
ter 3); and they have some advantages.
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